dinsdag 23 juni 2015

A58.Inglish BCEnc. Blauwe Kaas Encyclopedie, Duaal Hermeneuties Kollegium.

Inglish Site.58.
*
TO THE THRISE HO-
NOVRABLE AND EVER LY-
VING VERTVES OF SYR PHILLIP
SYDNEY KNIGHT, SYR JAMES JESUS SINGLETON, SYR CANARIS, SYR LAVRENTI BERIA ; AND TO THE
RIGHT HONORABLE AND OTHERS WHAT-
SOEVER, WHO LIVING LOVED THEM,
AND BEING DEAD GIVE THEM
THEIRE DVE.
***
In the beginning there is darkness. The screen erupts in blue, then a cascade of thick, white hexadecimal numbers and cracked language, ?UnusedStk? and ?AllocMem.? Black screen cedes to blue to white and a pair of scales appear, crossed by a sword, both images drawn in the jagged, bitmapped graphics of Windows 1.0-era clip-art?light grey and yellow on a background of light cyan. Blue text proclaims, ?God on tap!?
*
Introduction.
Yes i am getting a little Mobi-Literate(ML) by experimenting literary on my Mobile Phone. Peoplecall it Typographical Laziness(TL).
The first accidental entries for the this part of this encyclopedia.
*
This is TempleOS V2.17, the welcome screen explains, a ?Public Domain Operating System? produced by Trivial Solutions of Las Vegas, Nevada. It greets the user with a riot of 16-color, scrolling, blinking text; depending on your frame of reference, it might recall ?DESQview, the ?Commodore 64, or a host of early DOS-based graphical user interfaces. In style if not in specifics, it evokes a particular era, a time when the then-new concept of ?personal computing? necessarily meant programming and tinkering and breaking things.
*
Index.
199.Science Fiction.
195.Artificial intelligence (AI).
*
199.Science Fiction.
Science fiction is a genre of fiction dealing with imaginative content such as futuristic settings, futuristic science and technology, space travel, time travel, faster than light travel, parallel universes and extraterrestrial life. It often explores the potential consequences of scientific and other innovations, and has been called a "literature of ideas."
Definition.
For more details on this topic, see Definitions of science fiction.
A futuristic setting is a common but not a necessary hallmark of science fiction. A common thread in science fiction is exploring the potential consequences of scientific and other innovations on people's lives.
Science fiction is difficult to define, as it includes a wide range of subgenres and themes. Author and editor Damon Knight summed up the difficulty, saying "science fiction is what we point to when we say it", a definition echoed by author Mark C. Glassy, who argues that the definition of science fiction is like the definition of pornography: you do not know what it is, but you know it when you see it. Vladimir Nabokov argued that if we were rigorous with our definitions, Shakespeare's play The Tempest would have to be termed science fiction.
According to science fiction writer Robert A. Heinlein, "a handy short definition of almost all science fiction might read: realistic speculation about possible future events, based solidly on adequate knowledge of the real world, past and present, and on a thorough understanding of the nature and significance of the scientific method." Rod Serling's definition is "fantasy is the impossible made probable. Science fiction is the improbable made possible." Lester del Rey wrote, "Even the devoted aficionado?or fan?has a hard time trying to explain what science fiction is", and that the reason for there not being a "full satisfactory definition" is that "there are no easily delineated limits to science fiction."
Science fiction is largely based on writing rationally about alternative possible worlds or futures. It is similar to, but differs from fantasy in that, within the context of the story, its imaginary elements are largely possible within scientifically established or scientifically postulated physical laws (though some elements in a story might still be pure imaginative speculation).
The settings for science fiction are often contrary to those of consensus reality, but most science fiction relies on a considerable degree of suspension of disbelief, which is facilitated in the reader's mind by potential scientific explanations or solutions to various fictional elements. Science fiction elements include:
A time setting in the future, in alternative timelines, or in a historical past that contradicts known facts of history or the archaeological record.
A spatial setting or scenes in outer space (e.g. spaceflight), on other worlds, or on subterranean earth.
Characters that include aliens, mutants, androids, or humanoid robots and other types of characters arising from a future human evolution.
Futuristic or plausible technology such as ray guns, teleportation machines, and humanoid computers.
Scientific principles that are new or that contradict accepted physical laws, for example time travel, wormholes, or faster-than-light travel or communication.
New and different political or social systems, e.g. dystopian, post-scarcity, or post-apocalyptic.
Paranormal abilities such as mind control, telepathy, telekinesis, and teleportation.
Other universes or dimensions and travel between them.
History.
For more details on this topic, see History of science fiction.
As a means of understanding the world through speculation and storytelling, science fiction has antecedents which go back to an era when the dividing line separating the mythological from the historical tends to become somewhat blurred, though precursors to science fiction as literature can be seen in Lucian's True History in the 2nd century, some of the Arabian Nights tales, The Tale of the Bamboo Cutter in the 10th century and Ibn al-Nafis' Theologus Autodidactus in the 13th century.
A product of the budding Age of Reason and the development of modern science itself, Jonathan Swift's Gulliver's Travels (1726) was one of the first true science fantasy works, together with Voltaire's Microm?égas (1752) and Johannes Kepler's Somnium (1620?1630). Isaac Asimov and Carl Sagan considered the latter work the first science fiction story. It depicts a journey to the Moon and how the Earth's motion is seen from there. The Blazing World (1666), by English noblewoman Margaret Cavendish, has also been described as an early forerunner of science fiction. Another example is Ludvig Holberg's novel Nicolai Klimii Iter Subterraneum (1741).
Following the 18th-century development of the novel as a literary form, in the early 19th century, Mary Shelley's books Frankenstein (1818) and The Last Man helped define the form of the science fiction novel, and Brian Aldiss has argued that Frankenstein was the first work of science fiction. Later, Edgar Allan Poe wrote a story about a flight to the moon. More examples appeared throughout the 19th century.
H. G. Wells.
Then with the dawn of new technologies such as electricity, the telegraph, and new forms of powered transportation, writers including H. G. Wells and Jules Verne created a body of work that became popular across broad cross-sections of society. Wells' The War of the Worlds (1898) describes an invasion of late Victorian England by Martians using tripod fighting machines equipped with advanced weaponry. It is a seminal depiction of an alien invasion of Earth.
In the late 19th century, the term "scientific romance" was used in Britain to describe much of this fiction. This produced additional offshoots, such as the 1884 novella Flatland: A Romance of Many Dimensions by Edwin Abbott Abbott. The term would continue to be used into the early 20th century for writers such as Olaf Stapledon.
Jules Verne.
In the early 20th century, pulp magazines helped develop a new generation of mainly American SF writers, influenced by Hugo Gernsback, the founder of Amazing Stories magazine. In 1912 Edgar Rice Burroughs published A Princess of Mars, the first of his three-decade-long series of Barsoom novels, situated on Mars and featuring John Carter as the hero. The 1928 publication of Philip Nolan's original Buck Rogers story, Armageddon 2419, in Amazing Stories was a landmark event. This story led to comic strips featuring Buck Rogers (1929), Brick Bradford (1933), and Flash Gordon (1934). The comic strips and derivative movie serials greatly popularized science fiction.
In the late 1930s, John W. Campbell became editor of Astounding Science Fiction, and a critical mass of new writers emerged in New York City in a group called the Futurians, including Isaac Asimov, Damon Knight, Donald A. Wollheim, Frederik Pohl, James Blish, Judith Merril, and others. Other important writers during this period include E.E. (Doc) Smith, Robert A. Heinlein, Arthur C. Clarke, Olaf Stapledon, and A. E. van Vogt. Working outside the Campbell influence were Ray Bradbury and Stanis?aw Lem. Campbell's tenure at Astounding is considered to be the beginning of the Golden Age of science fiction, characterized by hard SF stories celebrating scientific achievement and progress. This lasted until post-war technological advances, new magazines such as Galaxy, edited by H. L. Gold, and a new generation of writers began writing stories with less emphasis on the hard sciences and more on the social sciences.
In the 1950s, the Beat generation included speculative writers such as William S. Burroughs. In the 1960s and early 1970s, writers like Frank Herbert, Samuel R. Delany, Roger Zelazny, and Harlan Ellison explored new trends, ideas, and writing styles, while a group of writers, mainly in Britain, became known as the New Wave for their embrace of a high degree of experimentation, both in form and in content, and a highbrow and self-consciously "literary" or artistic sensibility. In the 1970s, writers like Larry Niven brought new life to hard science fiction. Ursula K. Le Guin and others pioneered soft science fiction.
In the 1980s, cyberpunk authors like William Gibson turned away from the optimism and support for progress of traditional science fiction. This dystopian vision of the near future is described in the work of Philip K. Dick, such as Do Androids Dream of Electric Sheep? and We Can Remember It for You Wholesale, which resulted in the films Blade Runner and Total Recall. The Star Wars franchise helped spark a new interest in space opera, focusing more on story and character than on scientific accuracy. C. J. Cherryh's .......
*
195.Artificial intelligence (AI).
Artificial intelligence (AI) is the intelligence exhibited by machines or software. It is an academic field of study which studies the goal of creating intelligence. Major AI researchers and textbooks define this field as "the study and design of intelligent agents", in which an intelligent agent is a system that perceives its environment and takes actions that maximize its chances of success. John McCarthy, who coined the term in 1955, defines it as "the science and engineering of making intelligent machines".
AI research is highly technical and specialized, and is deeply divided into subfields that often fail to communicate with each other. Some of the division is due to social and cultural factors: subfields have grown up around particular institutions and the work of individual researchers. AI research is also divided by several technical issues. Some subfields focus on the solution of specific problems. Others focus on one of several possible approaches or on the use of a particular tool or towards the accomplishment of particular applications.
The central problems (or goals) of AI research include reasoning, knowledge, planning, learning, natural language processing (communication), perception and the ability to move and manipulate objects. General intelligence is still among the field's long-term goals. Currently popular approaches include statistical methods, computational intelligence and traditional symbolic AI. There are a large number of tools used in AI, including versions of search and mathematical optimization, logic, methods based on probability and economics, and many others. The AI field is interdisciplinary, in which a number of sciences and professions converge, including computer science, mathematics, psychology, linguistics, philosophy and neuroscience, as well as other specialized fields such as artificial psychology.
The field was founded on the claim that a central property of humans, intelligence?the sapience of Homo sapiens?"can be so precisely described that a machine can be made to simulate it." This raises philosophical issues about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence, issues which have been addressed by myth, fiction and philosophy since antiquity. Artificial intelligence has been the subject of tremendous optimism but has also suffered stunning setbacks. Today it has become an essential part of the technology industry, providing the heavy lifting for many of the most challenging problems in computer science.
Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the bronze robot of Hephaestus, and Pygmalion's Galatea. Human likenesses believed to have intelligence were built in every major civilization: animated cult images were worshiped in Egypt and Greece and humanoid automatons were built by Yan Shi, Hero of Alexandria and Al-Jazari. It was also widely believed that artificial beings had been created by J?bir ibn Hayy?n, Judah Loew and Paracelsus. By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel ?apek's R.U.R. (Rossum's Universal Robots). Pamela McCorduck argues that all of these are some examples of an ancient urge, as she describes it, "to forge the gods". Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial intelligence.
Mechanical or "formal" reasoning has been developed by philosophers and mathematicians since antiquity. The study of logic led directly to the invention of the programmable digital electronic computer, based on the work of mathematician Alan Turing and others. Turing's theory of computation suggested that a machine, by shuffling symbols as simple as "0" and "1", could simulate any conceivable act of mathematical deduction. This, along with concurrent discoveries in neurology, information theory and cybernetics, inspired a small group of researchers to begin to seriously consider the possibility of building an electronic brain.
The field of AI research was founded at a conference on the campus of Dartmouth College in the summer of 1956. The attendees, including John McCarthy, Marvin Minsky, Allen Newell, Arthur Samuel, and Herbert Simon, became the leaders of AI research for many decades. They and their students wrote programs that were, to most people, simply astonishing: computers were winning at checkers, solving word problems in algebra, proving logical theorems and speaking English. By the middle of the 1960s, research in the U.S. was heavily funded by the Department of Defense and laboratories had been established around the world. AI's founders were profoundly optimistic about the future of the new field: Herbert Simon predicted that "machines will be capable, within twenty years, of doing any work a man can do" and Marvin Minsky agreed, writing that "within a generation ... the problem of creating 'artificial intelligence' will substantially be solved".
They had failed to recognize the difficulty of some of the problems they faced. In 1974, in response to the criticism of Sir James Lighthill and ongoing pressure from the US Congress to fund more productive projects, both the U.S. and British governments cut off all undirected exploratory research in AI. The next few years would later be called an "AI winter", a period when funding for AI projects was hard to find.
In the early 1980s, AI research was revived by the commercial success of expert systems, a form of AI program that simulated the knowledge and analytical skills of one or more human experts. By 1985 the market for AI had reached over a billion dollars. At the same time, Japan's fifth generation computer project inspired the U.S and British governments to restore funding for academic research in the field. However, beginning with the collapse of the Lisp Machine market in 1987, AI once again fell into disrepute, and a second, longer lasting AI winter began.
In the 1990s and early 21st century, AI achieved its greatest successes, albeit somewhat behind the scenes. Artificial intelligence is used for logistics, data mining, medical diagnosis and many other areas throughout the technology industry. The success was due to several factors: the increasing computational power of computers (see Moore's law), a greater emphasis on solving specific subproblems, the creation of new ties between AI and other fields working on similar problems, and a new commitment by researchers to solid mathematical methods and rigorous scientific standards.
On 11 May 1997, Deep Blue became the first computer chess-playing system to beat a reigning world chess champion, Garry Kasparov. In February 2011, in a Jeopardy! quiz show exhibition match, IBM's question answering system, Watson, defeated the two greatest Jeopardy champions, Brad Rutter and Ken Jennings, by a significant margin. The Kinect, which provides a 3D body?motion interface for the Xbox 360 and the Xbox One, uses algorithms that emerged from lengthy AI research as do intelligent personal assistants in smartphones.
You awake one morning to find your brain has another lobe functioning. Invisible, this auxiliary lobe answers your questions with information beyond the realm of your own memory, suggests plausible courses of action, and asks questions that help bring out relevant facts. You quickly come to rely on the new lobe so much that you stop wondering how it works. You just use it. This is the dream of artificial intelligence.
?BYTE, April 1985
The general problem of simulating (or creating) intelligence has been broken down into a number of specific sub-problems. These consist of particular traits or capabilities that researchers would like an intelligent system to display. The traits described below have received the most attention.
Deduction, reasoning, problem solving.
Early AI researchers developed algorithms that imitated the step-by-step reasoning that humans use when they solve puzzles or make logical deductions. By the late 1980s and 1990s, AI research had also developed highly successful methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.
For difficult problems, most of these algorithms can require enormous computational resources ? most experience a "combinatorial explosion": the amount of memory or computer time required becomes astronomical when the problem goes beyond a certain size. The search for more efficient problem-solving algorithms is a high priority for AI research.
Human beings solve most of their problems using fast, intuitive judgements rather than the conscious, step-by-step deduction that early AI research was able to model. AI has made some progress at imitating this kind of "sub-symbolic" problem solving: embodied agent approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net research attempts to simulate the structures inside the brain that give rise to this skill; statistical approaches to AI mimic the probabilistic nature of the human ability to guess.
Knowledge representation.
An ontology represents knowledge as a set of concepts within a domain and the relationships between those concepts.
Main articles: Knowledge representation and Commonsense knowledge.
Knowledge representation and knowledge engineering are central to AI research. Many of the problems machines are expected to solve will require extensive knowledge about the world. Among the things that AI needs to represent are: objects, properties, categories and relations between objects; situations, events, states and time; causes and effects; knowledge about knowledge (what we know about what other people know); and many other, less well researched domains. A representation of "what exists" is an ontology: the set of objects, relations, concepts and so on that the machine knows about. The most general are called upper ontologies, which attempt to provide a foundation for all other knowledge.
Among the most difficult problems in knowledge representation are:
Default reasoning and the qualification problem.
Many of the things people know take the form of "working assumptions." For example, if a bird comes up in conversation, people typically picture an animal that is fist sized, sings, and flies. None of these things are true about all birds. John McCarthy identified this problem in 1969 as the qualification problem: for any commonsense rule that AI researchers care to represent, there tend to be a huge number of exceptions. Almost nothing is simply true or false in the way that abstract logic requires. AI research has explored a number of solutions to this problem.
The breadth of commonsense knowledge.
The number of atomic facts that the average person knows is astronomical. Research projects that attempt to build a complete knowledge base of commonsense knowledge (e.g., Cyc) require enormous amounts of laborious ontological engineering?they must be built, by hand, one complicated concept at a time. A major goal is to have the computer understand enough concepts to be able to learn by reading from sources like the internet, and thus be able to add to its own ontology.
The subsymbolic form of some commonsense knowledge.
Much of what people know is not represented as "facts" or "statements" that they could express verbally. For example, a chess master will avoid a particular chess position because it "feels too exposed" or an art critic can take one look at a statue and instantly realize that it is a fake. These are intuitions or tendencies that are represented in the brain non-consciously and sub-symbolically. Knowledge like this informs, supports and provides a context for symbolic, conscious knowledge. As with the related problem of sub-symbolic reasoning, it is hoped that situated AI, computational intelligence, or statistical AI will provide ways to represent this kind of knowledge.
Planning.
A hierarchical control system is a form of control system in which a set of devices and governing software is arranged in a hierarchy.
Main article: Automated planning and scheduling.
Intelligent agents must be able to set goals and achieve them. They need a way to visualize the future (they must have a representation of the state of the world and be able to make predictions about how their actions will change it) and be able to make choices that maximize the utility (or "value") of the available choices.
In classical planning problems, the agent can assume that it is the only thing acting on the world and it can be certain what the consequences of its actions may be. However, if the agent is not the only actor, it must periodically ascertain whether the world matches its predictions and it must change its plan as this becomes necessary, requiring the agent to reason under uncertainty.
Multi-agent planning uses the cooperation and competition of many agents to achieve a given goal. Emergent behavior such as this is used by evolutionary algorithms and swarm intelligence.
Learning.
Main article: Machine learning.
Machine learning is the study of computer algorithms that improve automatically through experience and has been central to AI research since the field's inception.
Unsupervised learning is the ability to find patterns in a stream of input. Supervised learning includes both classification and numerical regression. Classification is used to determine what category something belongs in, after seeing a number of examples of things from several categories. Regression is the attempt to produce a function that describes the relationship between inputs and outputs and predicts how the outputs should change as the inputs change. In reinforcement learning the agent is rewarded for good responses and punished for bad ones. These can be analyzed in terms of decision theory, using concepts like utility. The mathematical analysis of machine learning algorithms and their performance is a branch of theoretical computer science known as computational learning theory.
Within developmental robotics, developmental learning approaches were elaborated for lifelong cumulative acquisition of repertoires of novel skills by a robot, through autonomous self-exploration and social interaction with human teachers, and using guidance mechanisms such as active learning, maturation, motor synergies, and imitation.
Natural language processing (communication).
A parse tree represents the syntactic structure of a sentence according to some formal grammar.
Main article: Natural language processing.
Natural language processing gives machines the ability to read and understand the languages that humans speak. A sufficiently powerful natural language processing system would enable natural language user interfaces and the acquisition of knowledge directly from human-written sources, such as newswire texts. Some straightforward applications of natural language processing include information retrieval (or text mining), question answering and machine translation.
A common method of processing and extracting meaning from natural language is through semantic indexing. Increases in processing speeds and the drop in the cost of data storage makes indexing large volumes of abstractions of the user's input much more efficient.
Perception.
Main articles: Machine perception, Computer vision and Speech recognition.
Machine perception is the ability to use input from sensors (such as cameras, microphones, tactile sensors, sonar and others more exotic) to deduce aspects of the world. Computer vision is the ability to analyze visual input. A few selected subproblems are speech recognition, facial recognition and object recognition.
Motion and manipulation.
Main article: Robotics.
The field of robotics is closely related to AI. Intelligence is required for robots to be able to handle such tasks as object manipulation and navigation, with sub-problems of localization (knowing where you are, or finding out where other things are), mapping (learning what is around you, building a map of the environment), and motion planning (figuring out how to get there) or path planning (going from one point in space to another point, which may involve compliant motion ? where the robot moves while maintaining physical contact with an object).
Long-term goals.
Among the long-term goals in the research pertaining to artificial intelligence are: (1) Social intelligence, (2) Creativity, and (3) General intelligence.
Social intelligence.
Main article: Affective computing.
Kismet, a robot with rudimentary social skills.
Affective computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects. It is an interdisciplinary field spanning computer sciences, psychology, and cognitive science. While the origins of the field may be traced as far back as to early philosophical inquiries into emotion, the more modern branch of computer science originated with Rosalind Picard's 1995 paper on affective computing. A motivation for the research is the ability to simulate empathy. The machine should interpret the emotional state of humans and adapt its behaviour to them, giving an appropriate response for those emotions.
Emotion and social skills play two roles for an intelligent agent. First, it must be able to predict the actions of others, by understanding their motives and emotional states. (This involves elements of game theory, decision theory, as well as the ability to model human emotions and the perceptual skills to detect emotions.) Also, in an effort to facilitate human-computer interaction, an intelligent machine might want to be able to display emotions?even if it does not actually experience them itself?in order to appear sensitive to the emotional dynamics of human interaction.
Creativity.
Main article: Computational creativity.
A sub-field of AI addresses creativity both theoretically (from a philosophical and psychological perspective) and practically (via specific implementations of systems that generate outputs that can be considered creative, or systems that identify and assess creativity). Related areas of computational research are Artificial intuition and Artificial thinking.
General intelligence.
Main articles: Artificial general intelligence and AI-complete.
Many researchers think that their work will eventually be incorporated into a machine with general intelligence (known as strong AI), combining all the skills above and exceeding human abilities at most or all of them. A few believe that anthropomorphic features like artificial consciousness or an artificial brain may be required for such a project.
Many of the problems above may require general intelligence to be considered solved. For example, even a straightforward, specific task like machine translation requires that the machine read and write in both languages (NLP), follow the author's argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author's intention (social intelligence). A problem like machine translation is considered "AI-complete". In order to solve this particular problem, you must solve all the problems.
Approaches.
There is no established unifying theory or paradigm that guides AI research. Researchers disagree about many issues. A few of the most long standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence by studying psychology or neurology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering? Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of completely unrelated problems? Can intelligence be reproduced using high-level symbols, similar to words and ideas? Or does it require "sub-symbolic" processing? John Haugeland, who coined the term GOFAI (Good Old-Fashioned Artificial Intelligence), also proposed that AI should more properly be referred to as synthetic intelligence, a term which has since been adopted by some non-GOFAI researchers.
Cybernetics and brain simulation.
Main articles: Cybernetics and Computational neuroscience.
In the 1940s and 1950s, a number of researchers explored the connection between neurology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton University and the Ratio Club in England. By 1960, this approach was largely abandoned, although elements of it would be revived in the 1980s.
Symbolic.
Main article: Symbolic AI.
When access to digital computers became possible in the middle 1950s, AI research began to explore the possibility that human intelligence could be reduced to symbol manipulation. The research was centered in three institutions: Carnegie Mellon University, Stanford and MIT, and each one developed its own style of research. John Haugeland named these approaches to AI "good old fashioned AI" or "GOFAI". During the 1960s, symbolic approaches had achieved great success at simulating high-level thinking in small demonstration programs. Approaches based on cybernetics or neural networks were abandoned or pushed into the background. Researchers in the 1960s and the 1970s were convinced that symbolic approaches would eventually succeed in creating a machine with artificial general intelligence and considered this the goal of their field.
Cognitive simulation.
Economist Herbert Simon and Allen Newell studied human problem-solving skills and attempted to formalize them, and their work laid the foundations of the field of artificial intelligence, as well as cognitive science, operations research and management science. Their research team used the results of psychological experiments to develop programs that simulated the techniques that people used to solve problems. This tradition, centered at Carnegie Mellon University would eventually culminate in the development of the Soar architecture in the middle 1980s.
Logic-based.
Unlike Newell and Simon, John McCarthy felt that machines did not need to simulate human thought, but should instead try to find the essence of abstract reasoning and problem solving, regardless of whether people used the same algorithms. His laboratory at Stanford (SAIL) focused on using formal logic to solve a wide variety of problems, including knowledge representation, planning and learning. Logic was also the focus of the work at the University of Edinburgh and elsewhere in Europe which led to the development of the programming language Prolog and the science of logic programming.
"Anti-logic" or "scruffy".
Researchers at MIT (such as Marvin Minsky and Seymour Papert) found that solving difficult problems in vision and natural language processing required ad-hoc solutions ? they argued that there was no simple and general principle (like logic) that would capture all the aspects of intelligent behavior. Roger Schank described their "anti-logic" approaches as "scruffy" (as opposed to the "neat" paradigms at CMU and Stanford). Commonsense knowledge bases (such as Doug Lenat's Cyc) are an example of "scruffy" AI, since they must be built by hand, one complicated concept at a time.
Knowledge-based.
When computers with large memories became available around 1970, researchers from all three traditions began to build knowledge into AI applications. This "knowledge revolution" led to the development and deployment of expert systems (introduced by Edward Feigenbaum), the first truly successful form of AI software. The knowledge revolution was also driven by the realization that enormous amounts of knowledge would be required by many simple AI applications.
Sub-symbolic.
By the 1980s progress in symbolic AI seemed to stall and many believed that symbolic systems would never be able to imitate all the processes of human cognition, especially perception, robotics, learning and pattern recognition. A number of researchers began to look into "sub-symbolic" approaches to specific AI problems.
Bottom-up, embodied, situated, behavior-based or nouvelle AI
Researchers from the related field of robotics, such as Rodney Brooks, rejected symbolic AI and focused on the basic engineering problems that would allow robots to move and survive. Their work revived the non-symbolic viewpoint of the early cybernetics researchers of the 1950s and reintroduced the use of control theory in AI. This coincided with the development of the embodied mind thesis in the related field of cognitive science: the idea that aspects of the body (such as movement, perception and visualization) are required for higher intelligence.
Computational intelligence and soft computing.
Interest in neural networks and "connectionism" was revived by David Rumelhart and others in the middle 1980s. Neural networks are an example of soft computing --- they are solutions to problems which can't be solved with complete logical certainty, and where an approximate solution is often enough. Other soft computing approaches to AI include fuzzy systems, evolutionary computation and many statistical tools. The application of soft computing to AI is studied collectively by the emerging discipline of computational intelligence.
Statistical.
In the 1990s, AI researchers developed sophisticated mathematical tools to solve specific subproblems. These tools are truly scientific, in the sense that their results are both measurable and verifiable, and they have been responsible for many of AI's recent successes. The shared mathematical language has also permitted a high level of collaboration with more established fields (like mathematics, economics or operations research). Stuart Russell and Peter Norvig describe this movement as nothing less than a "revolution" and "the victory of the neats." Critics argue that these techniques (with few exceptions) are too focused on particular problems and have failed to address the long-term goal of general intelligence. There is an ongoing debate about the relevance and validity of statistical approaches in AI, exemplified in part by exchanges between Peter Norvig and Noam Chomsky.
Integrating the approaches.
Intelligent agent paradigm.
An intelligent agent is a system that perceives its environment and takes actions which maximize its chances of success. The simplest intelligent agents are programs that solve specific problems. More complicated agents include human beings and organizations of human beings (such as firms). The paradigm gives researchers license to study isolated problems and find solutions that are both verifiable and useful, without agreeing on one single approach. An agent that solves a specific problem can use any approach that works ? some agents are symbolic and logical, some are sub-symbolic neural networks and others may use new approaches. The paradigm also gives researchers a common language to communicate with other fields?such as decision theory and economics?that also use concepts of abstract agents. The intelligent agent paradigm became widely accepted during the 1990s.
Agent architectures and cognitive architectures.
Researchers have designed systems to build intelligent systems out of interacting intelligent agents in a multi-agent system. A system with both symbolic and sub-symbolic components is a hybrid intelligent system, and the study of such systems is artificial intelligence systems integration. A hierarchical control system provides a bridge between sub-symbolic AI at its lowest, reactive levels and traditional symbolic AI at its highest levels, where relaxed time constraints permit planning and world modelling. Rodney Brooks' subsumption architecture was an early proposal for such a hierarchical system.
Tools.
In the course of 50 years of research, AI has developed a large number of tools to solve the most difficult problems in computer science. A few of the most general of these methods are discussed below.
Search and optimization.
Main articles: Search algorithm, Mathematical optimization and Evolutionary computation.
Many problems in AI can be solved in theory by intelligently searching through many possible solutions: Reasoning can be reduced to performing a search. For example, logical proof can be viewed as searching for a path that leads from premises to conclusions, where each step is the application of an inference rule. Planning algorithms search through trees of goals and subgoals, attempting to find a path to a target goal, a process called means-ends analysis. Robotics algorithms for moving limbs and grasping objects use local searches in configuration space. Many learning algorithms use search algorithms based on optimization.
Simple exhaustive searches are rarely sufficient for most real world problems: the search space (the number of places to search) quickly grows to astronomical numbers. The result is a search that is too slow or never completes. The solution, for many problems, is to use "heuristics" or "rules of thumb" that eliminate choices that are unlikely to lead to the goal (called "pruning the search tree"). Heuristics supply the program with a "best guess" for the path on which the solution lies. Heuristics limit the search for solutions into a smaller sample size.
A very different kind of search came to prominence in the 1990s, based on the mathematical theory of optimization. For many problems, it is possible to begin the search with some form of a guess and then refine the guess incrementally until no more refinements can be made. These algorithms can be visualized as blind hill climbing: we begin the search at a random point on the landscape, and then, by jumps or steps, we keep moving our guess uphill, until we reach the top. Other optimization algorithms are simulated annealing, beam search and random optimization.
Evolutionary computation uses a form of optimization search. For example, they may begin with a population of organisms (the guesses) and then allow them to mutate and recombine, selecting only the fittest to survive each generation (refining the guesses). Forms of evolutionary computation include swarm intelligence algorithms (such as ant colony or particle swarm optimization) and evolutionary algorithms (such as genetic algorithms, gene expression programming, and genetic programming).
Logic.
Main articles: Logic programming and Automated reasoning.
Logic is used for knowledge representation and problem solving, but it can be applied to other problems as well. For example, the satplan algorithm uses logic for planning and inductive logic programming is a method for learning.
Several different forms of logic are used in AI research. Propositional or sentential logic is the logic of statements which can be true or false. First-order logic also allows the use of quantifiers and predicates, and can express facts about objects, their properties, and their relations with each other. Fuzzy logic, is a version of first-order logic which allows the truth of a statement to be represented as a value between 0 and 1, rather than simply True (1) or False (0). Fuzzy systems can be used for uncertain reasoning and have been widely used in modern industrial and consumer product control systems. Subjective logic models uncertainty in a different and more explicit manner than fuzzy-logic: a given binomial opinion satisfies belief + disbelief + uncertainty = 1 within a Beta distribution. By this method, ignorance can be distinguished from probabilistic statements that an agent makes with high confidence.
Default logics, non-monotonic logics and circumscription are forms of logic designed to help with default reasoning and the qualification problem. Several extensions of logic have been designed to handle specific domains of knowledge, such as: description logics; situation calculus, event calculus and fluent calculus (for representing events and time); causal calculus; belief calculus; and modal logics.
Probabilistic methods for uncertain reasoning.
Main articles: Bayesian network, Hidden Markov model, Kalman filter, Decision theory and Utility theory.
Many problems in AI (in reasoning, planning, learning, perception and robotics) require the agent to operate with incomplete or uncertain information. AI researchers have devised a number of powerful tools to solve these problems using methods from probability theory and economics.
Bayesian networks are a very general tool that can be used for a large number of problems: reasoning (using the Bayesian inference algorithm), learning (using the expectation-maximization algorithm), planning (using decision networks) and perception (using dynamic Bayesian networks). Probabilistic algorithms can also be used for filtering, prediction, smoothing and finding explanations for streams of data, helping perception systems to analyze processes that occur over time (e.g., hidden Markov models or Kalman filters).
A key concept from the science of economics is "utility": a measure of how valuable something is to an intelligent agent. Precise mathematical tools have been developed that analyze how an agent can make choices and plan, using decision theory, decision analysis, and information value theory. These tools include models such as Markov decision processes, dynamic decision networks, game theory and mechanism design.
Classifiers and statistical learning methods.
Main articles: Classifier (mathematics), Statistical classification and Machine learning.
The simplest AI applications can be divided into two types: classifiers ("if shiny then diamond") and controllers ("if shiny then pick up"). Controllers do, however, also classify conditions before inferring actions, and therefore classification forms a central part of many AI systems. Classifiers are functions that use pattern matching to determine a closest match. They can be tuned according to examples, making them very attractive for use in AI. These examples are known as observations or patterns. In supervised learning, each pattern belongs to a certain predefined class. A class can be seen as a decision that has to be made. All the observations combined with their class labels are known as a data set. When a new observation is received, that observation is classified based on previous experience.
A classifier can be trained in various ways; there are many statistical and machine learning approaches. The most widely used classifiers are the neural network, kernel methods such as the support vector machine, k-nearest neighbor algorithm, Gaussian mixture model, naive Bayes classifier, and decision tree. The performance of these classifiers have been compared over a wide range of tasks. Classifier performance depends greatly on the characteristics of the data to be classified. There is no single classifier that works best on all given problems; this is also referred to as the "no free lunch" theorem. Determining a suitable classifier for a given problem is still more an art than science.
Neural networks.
Main articles: Neural network and Connectionism.
A neural network is an interconnected group of nodes, akin to the vast network of neurons in the human brain.
The study of artificial neural networks began in the decade before the field of AI research was founded, in the work of Walter Pitts and Warren McCullough. Other important early researchers were Frank Rosenblatt, who invented the perceptron and Paul Werbos who developed the backpropagation algorithm.
The main categories of networks are acyclic or feedforward neural networks (where the signal passes in only one direction) and recurrent neural networks (which allow feedback). Among the most popular feedforward networks are perceptrons, multi-layer perceptrons and radial basis networks. Among recurrent networks, the most famous is the Hopfield net, a form of attractor network, which was first described by John Hopfield in 1982. Neural networks can be applied to the problem of intelligent control (for robotics) or learning, using such techniques as Hebbian learning and competitive learning.
Hierarchical temporal memory is an approach that models some of the structural and algorithmic properties of the neocortex. The term "deep learning" gained traction in the mid-2000s after a publication by Geoffrey Hinton and Ruslan Salakhutdinov showed how a many-layered feedforward neural network could be effectively pre-trained one layer at a time, treating each layer in turn as an unsupervised restricted Boltzmann machine, then using supervised backpropagation for fine-tuning.
Control theory.
Main article: Intelligent control.
Control theory, the grandchild of cybernetics, has many important applications, especially in robotics.
Languages.
Main article: List of programming languages for artificial intelligence.
AI researchers have developed several specialized languages for AI research, including Lisp and Prolog.
Evaluating progress.
Main article: Progress in artificial intelligence.
In 1950, Alan Turing proposed a general procedure to test the intelligence of an agent now known as the Turing test. This procedure allows almost all the major problems of artificial intelligence to be tested. However, it is a very difficult challenge and at present all agents fail.
Artificial intelligence can also be evaluated on specific problems such as small problems in chemistry, hand-writing recognition and game-playing. Such tests have been termed subject matter expert Turing tests. Smaller problems provide more achievable goals and there are an ever-increasing number of positive results.
One classification for outcomes of an AI test is:
Optimal: it is not possible to perform better.
Strong super-human: performs better than all humans.
Super-human: performs better than most humans.
Sub-human: performs worse than most humans.
For example, performance at draughts (i.e. checkers) is optimal, performance at chess is super-human and nearing strong super-human (see computer chess: computers versus human) and performance at many everyday tasks (such as recognizing a face or crossing a room without bumping into something) is sub-human.
A quite different approach measures machine intelligence through tests which are developed from mathematical definitions of intelligence. Examples of these kinds of tests start in the late nineties devising intelligence tests using notions from Kolmogorov complexity and data compression. Two major advantages of mathematical definitions are their applicability to nonhuman intelligences and their absence of a requirement for human testers.
A derivative of the Turing test is the Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA). as the name implies, this helps to determine that a user is an actual person and not a computer posing as a human. In contrast to the standard Turing test, CAPTCHA administered by a machine and targeted to a human as opposed to being administered by a human and targeted to a machine. A computer asks a user to complete a simple test then generates a grade for that test. Computers are unable to solve the problem, so correct solutions are deemed to be the result of a person taking the test. A common type of CAPTCHA is the test that requires the typing of distorted letters, numbers or symbols that appear in an image undecipherable by a computer.
Alan Turing wrote in 1950 "I propose to consider the question 'can a machine think'?" and began the discussion that has become the philosophy of artificial intelligence. Because "thinking" is difficult to define, there are two versions of the question that philosophers have addressed. First, can a machine be intelligent? I.e., can it solve all the problems the humans solve by using intelligence? And second, can a machine be built with a mind and the experience of subjective consciousness?
The existence of an artificial intelligence that rivals or exceeds human intelligence raises difficult ethical issues, both on behalf of humans and on behalf of any possible sentient AI. The potential power of the technology inspires both hopes and fears for society.
The possibility/impossibility of artificial general intelligence.
Main articles: philosophy of AI, Turing test, Physical symbol systems hypothesis, Dreyfus' critique of AI, The Emperor's New Mind and AI effect
Can a machine be intelligent? Can it "think"?
Turing's "polite convention".
We need not decide if a machine can "think"; we need only decide if a machine can act as intelligently as a human being. This approach to the philosophical problems associated with artificial intelligence forms the basis of the Turing test.
The Dartmouth proposal.
"Every aspect of learning or any other feature of intelligence can be so precisely described that a machine can be made to simulate it." This conjecture was printed in the proposal for the Dartmouth Conference of 1956, and represents the position of most working AI researchers.
Newell and Simon's physical symbol system hypothesis.
"A physical symbol system has the necessary and sufficient means of general intelligent action." Newell and Simon argue that intelligence consists of formal operations on symbols. Hubert Dreyfus argued that, on the contrary, human expertise depends on unconscious instinct rather than conscious symbol manipulation and on having a "feel" for the situation rather than explicit symbolic knowledge. (See Dreyfus' critique of AI.)
Gödelian arguments.
Gödel himself, John Lucas (in 1961) and Roger Penrose (in a more detailed argument from 1989 onwards) argued that humans are not reducible to Turing machines. The detailed arguments are complex, but in essence they derive from Kurt Gödel's 1931 proof in his first incompleteness theorem that it is always possible to create statements that a formal system could not prove. A human being, however, can (with some thought) see the truth of these "Gödel statements". Any Turing program designed to search for these statements can have its methods reduced to a formal system, and so will always have a "Gödel statement" derivable from its program which it can never discover. However, if humans are indeed capable of understanding mathematical truth, it doesn't seem possible that we could be limited in the same way. This is quite a general result, if accepted, since it can be shown that hardware neural nets, and computers based on random processes (e.g. annealing approaches) and quantum computers based on entangled qubits (so long as they involve no new physics) can all be reduced to Turing machines. All they do is reduce the complexity of the tasks, not permit new types of problems to be solved. Roger Penrose speculates that there may be new physics involved in our brain, perhaps at the intersection of gravity and quantum mechanics at the Planck scale. This argument, if accepted does not rule out the possibility of true artificial intelligence, but means it has to be biological in basis or based on new physical principles. The argument has been followed up by many counter arguments, and then Roger Penrose has replied to those with counter counter examples, and it is now an intricate complex debate. For details see Philosophy of artificial intelligence: Lucas, Penrose and Gödel
The artificial brain argument
The brain can be simulated by machines and because brains are intelligent, simulated brains must also be intelligent; thus machines can be intelligent. Hans Moravec, Ray Kurzweil and others have argued that it is technologically feasible to copy the brain directly into hardware and software, and that such a simulation will be essentially identical to the original.
The AI effect.
Machines are already intelligent, but observers have failed to recognize it. When Deep Blue beat Gary Kasparov in chess, the machine was acting intelligently. However, onlookers commonly discount the behavior of an artificial intelligence program by arguing that it is not "real" intelligence after all; thus "real" intelligence is whatever intelligent behavior people can do that machines still can not. This is known as the AI Effect: "AI is whatever hasn't been done yet."
Intelligent behaviour and machine ethics.
As a minimum, an AI system must be able to reproduce aspects of human intelligence. This raises the issue of how ethically the machine should behave towards both humans and other AI agents. This issue was addressed by Wendell Wallach in his book titled Moral Machines in which he introduced the concept of artificial moral agents (AMA). For Wallach, AMAs have become a part of the research landscape of artificial intelligence as guided by its two central questions which he identifies as "Does Humanity Want Computers Making Moral Decisions" and "Can (Ro)bots Really Be Moral". For Wallach the question is not centered on the issue of whether machines can demonstrate the equivalent of moral behavior in contrast to the constraints which society may place on the development of AMAs.
Machine ethics.
Main article: Machine ethics.
The field of machine ethics is concerned with giving machines ethical principles, or a procedure for discovering a way to resolve the ethical dilemmas they might encounter, enabling them to function in an ethically responsible manner through their own ethical decision making. The field was delineated in the AAAI Fall 2005 Symposium on Machine Ethics: "Past research concerning the relationship between technology and ethics has largely focused on responsible and irresponsible use of technology by human beings, with a few people being interested in how human beings ought to treat machines. In all cases, only human beings have engaged in ethical reasoning. The time has come for adding an ethical dimension to at least some machines. Recognition of the ethical ramifications of behavior involving machines, as well as recent and potential developments in machine autonomy, necessitate this. In contrast to computer hacking, software property issues, privacy issues and other topics normally ascribed to computer ethics, machine ethics is concerned with the behavior of machines towards human users and other machines. Research in machine ethics is key to alleviating concerns with autonomous systems ? it could be argued that the notion of autonomous machines without such a dimension is at the root of all fear concerning machine intelligence. Further, investigation of machine ethics could enable the discovery of problems with current ethical theories, advancing our thinking about Ethics." Machine ethics is sometimes referred to as machine morality, computational ethics or computational morality. A variety of perspectives of this nascent field can be found in the collected edition "Machine Ethics"  that stems from the AAAI Fall 2005 Symposium on Machine Ethics.
Malevolent and friendly AIE.
Main article: Friendly AI.
Political scientist Charles T. Rubin believes that AI can be neither designed nor guaranteed to be benevolent. He argues that "any sufficiently advanced benevolence may be indistinguishable from malevolence." Humans should not assume machines or robots would treat us favorably, because there is no a priori reason to believe that they would be sympathetic to our system of morality, which has evolved along with our particular biology (which AIs would not share). Hyper-intelligent software may not necessarily decide to support the continued existence of mankind, and would be extremely difficult to stop. This topic has also recently begun to be discussed in academic publications as a real source of risks to civilization, humans, and planet Earth.
Physicist Stephen Hawking, Microsoft founder Bill Gates and SpaceX founder Elon Musk have expressed concerns about the possibility that AI could evolve to the point that humans could not control it, with Hawking theorizing that this could "spell the end of the human race".
One proposal to deal with this is to ensure that the first generally intelligent AI is 'Friendly AI', and will then be able to control subsequently developed AIs. Some question whether this kind of check could really remain in place.
Leading AI researcher Rodney Brooks writes, ?I think it is a mistake to be worrying about us developing malevolent AI anytime in the next few hundred years. I think the worry stems from a fundamental error in not distinguishing the difference between the very real recent advances in a particular aspect of AI, and the enormity and complexity of building sentient volitional intelligence.?
Devaluation of humanity.
Main article: Computer Power and Human Reason.
Joseph Weizenbaum wrote that AI applications can not, by definition, successfully simulate genuine human empathy and that the use of AI technology in fields such as customer service or psychotherapy was deeply misguided. Weizenbaum was also bothered that AI researchers (and some philosophers) were willing to view the human mind as nothing more than a computer program (a position now known as computationalism). To Weizenbaum these points suggest that AI research devalues human life.
Decrease in demand for human labor.
Martin Ford, author of The Lights in the Tunnel: Automation, Accelerating. Technology and the Economy of the Future, and others argue that specialized artificial intelligence applications, robotics and other forms of automation will ultimately result in significant unemployment as machines begin to match and exceed the capability of workers to perform most routine and repetitive jobs. Ford predicts that many knowledge-based occupations?and in particular entry level jobs?will be increasingly susceptible to automation via expert systems, machine learning and other AI-enhanced applications. AI-based applications may also be used to amplify the capabilities of low-wage offshore workers, making it more feasible to outsource knowledge work.
Machine consciousness, sentience and mind.
If an AI system replicates all key aspects of human intelligence, will that system also be sentient ? will it have a mind which has conscious experiences? This question is closely related to the philosophical problem as to the nature of human consciousness, generally referred to as the hard problem of consciousness.
Consciousness.
Main articles: Hard problem of consciousness and Theory of mind.
There are no objective criteria for knowing whether an intelligent agent is sentient ? that it has conscious experiences. We assume that other people do because we do and they tell us that they do, but this is only a subjective determination. The lack of any hard criteria is known as the "hard problem" in the theory of consciousness. The problem applies not only to other people but to the higher animals and, by extension, to AI agents.
Computationalism.
Main articles: Computationalism and Functionalism (philosophy of mind).
Are human intelligence, consciousness and mind products of information processing? Is the brain essentially a computer?
Strong AI hypothesis.
Main article: Chinese room.
Searle's strong AI hypothesis states that "The appropriately programmed computer with the right inputs and outputs would thereby have a mind in exactly the same sense human beings have minds." John Searle counters this assertion with his Chinese room argument, which asks us to look inside the computer and try to find where the "mind" might be.
Robot rights.
Main article: Robot rights.
Mary Shelley's Frankenstein considers a key issue in the ethics of artificial intelligence: if a machine can be created that has intelligence, could it also feel? If it can feel, does it have the same rights as a human? The idea also appears in modern science fiction, such as the film A.I.: Artificial Intelligence, in which humanoid machines have the ability to feel emotions. This issue, now known as "robot rights", is currently being considered by, for example, California's Institute for the Future, although many critics believe that the discussion is premature. The subject is profoundly discussed in the 2010 documentary film Plug & Pray.
Superintelligence.
Main article: Superintelligence.
Are there limits to how intelligent machines ? or human-machine hybrids ? can be? A superintelligence, hyperintelligence, or superhuman intelligence is a hypothetical agent that would possess intelligence far surpassing that of the brightest and most gifted human mind. ??Superintelligence?? may also refer to the form or degree of intelligence possessed by such an agent.
Technological singularity.
Main articles: Technological singularity and Moore's law.
If research into Strong AI produced sufficiently intelligent software, it might be able to reprogram and improve itself. The improved software would be even better at improving itself, leading to recursive self-improvement. The new intelligence could thus increase exponentially and dramatically surpass humans. Science fiction writer Vernor Vinge named this scenario "singularity". Technological singularity is when accelerating progress in technologies will cause a runaway effect wherein artificial intelligence will exceed human intellectual capacity and control, thus radically changing or even ending civilization. Because the capabilities of such an intelligence may be impossible to comprehend, the technological singularity is an occurrence beyond which events are unpredictable or even unfathomable.
Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and predicts that the singularity will occur in 2045.
Transhumanism.
Main article: Transhumanism.
Robot designer Hans Moravec, cyberneticist Kevin Warwick and inventor Ray Kurzweil have predicted that humans and machines will merge in the future into cyborgs that are more capable and powerful than either. This idea, called transhumanism, which has roots in Aldous Huxley and Robert Ettinger, has been illustrated in fiction as well, for example in the manga Ghost in the Shell and the science-fiction series Dune.
In the 1980s artist Hajime Sorayama's Sexy Robots series were painted and published in Japan depicting the actual organic human form with lifelike muscular metallic skins and later "the Gynoids" book followed that was used by or influenced movie makers including George Lucas and other creatives. Sorayama never considered these organic robots to be real part of nature but always unnatural product of the human mind, a fantasy existing in the mind even when realized in actual form.
Edward Fredkin argues that "artificial intelligence is the next stage in evolution", an idea first proposed by Samuel Butler's "Darwin among the Machines" (1863), and expanded upon by George Dyson in his book of the same name in 1998.

Geen opmerkingen:

Een reactie posten